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ABSTRACT

An analytic approach is used for evaluation of the microwave power absorption profiles in a
lossy dielectric cylinder coaxially aligned in a cylindrical cavity. This approach, based on a
cylindrical shell model, also determines the normal mode frequencies and fields. Absorption
profiles inside the sample will be presented for resonant modes that are inrnnsically angular
independent. In addition, results will be presented for special modes that are not intrinsically
angular independent, but produce angular independent absorption for time average values. This
new development broadens the class of modes that can be used in heating materials when isotropy
about an axis is needed. We demonstrate how this model can extend the application of cavity
perturbation theory for determining dielectric constants to cylinders of larger diameter.
Implications of these results for microwave processing of materials are also discussed.

INTRODUCTION

The dkmibution of power absorption in a sample is a major factor that influences how materials
undergo processing in a microwave cavity. This is mainly due to the effects of the power
distribution on the temperature profile within a sample. Theoretical modeling can aid in matching
absorption and temperature profiles to a process to attain optimum results in a variety of
applications, including chemical vapor infiltration, sintering, fiber processing, combustion
synthesis, joining, and annealing. Avoidance of catastrophic events such as thermal runaway or
cracking due to thermal stresses in a sample during processing can also be aided by calculations
and interpretation of the results.

We have previously applied a combination of analytic and numerical methods to calculate
electromagnetic and thermal properties in spherical samples during microwave heating [1 - 4]. In
the present work, we present a new approach to calculate the power absorption of a lossy dielectric
cylindrical sample located on the axis of a resonant cylindrical cavity. This is a desirable geometry
in many practical applications in processing materials. Furthermore, a system having this
configuration can be treated theoretically with a high degree of accuracy within the framework of a
cylindrical shell model that we have developed.

In this paper, we will focus on electromagnetic aspects of the problem and examine some
power absorption profiles, Then we will discuss implications of calculated results for materials
processing. In addition, we will illustrate how the model can be used in combination with
experimental measurements of the resonant frequency and quality factor to determine the complex
dielectric constant of a sample under some conditions. Data for dielectric constants as a function of
temperature and frequency are not presently available for many materials of experimental interest.
In these cases, the application of our model, in reverse, can determine the complex dielectric
constant and provide input for calculations bearing more directly on materials processing. We are
now combining results on power absorption distributions with a set of thermal equations to derive
formulas for temperature profiles within cylindrical rods. We plan to conduct numerical studies of
these profiles and report on them in the future.

The remainder of this paper is organized as follows. First, the theory of a cylindrical shell
model is described. Next, calculated results are presented and discussed. Our conclusions are
con~lined in the final section.



THEORY

The geometry of the model that we have
used is shown in Fig. 1. The ori in O of a

7cylindrical coordinate system (p, 0, z is located
at the center of the bottom plate of the cavity.
The interior of the sample is treated as if it were
partitioned into zones consisting of a central rod
and many concentric tubes. The complex
dielectric constant is taken to be uniform
throughout each zone, but may vary from one
zone to another. The temperature variation of
the complex dielectric constant and the
possibility that different materials may occupy
different zones can be treated accurately with
this model whenever normal mode fields in the
loaded cavity have no z - dependence. The
model can also yield accurate results for a
general normal mode, even when there is z-
dependence in the fields, whenever the
temperature dependence of the complex
dielectric constant can be neglected.
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Fig. 1. Geometry of cylindrical
and cavity.
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Normal modes of this cylindrically loaded cavity are found by first writing down formulas for
fields that are expressed as a superposition of basis functions that are known solutions of
Maxwell’s equations in each zone. Next, the appropriate boundary conditions are applied at the
interior zone boundaries and at the cavity walls, including the end plates. After the boundary
conditions are applied, the superposition still contains coefficients that must be determined. The
problem of fixing those coefficients is solved using a 4 X 4 matrix representation with the aid of a
technique that has been described by Sphicopoulos,  Bemier, and Gardiol [5]. The normal mode
frequencies and quality factors for the system are roots of a determinant of this 4 X 4 matrix. Both
the determinant itself and its roots are complex-valued in general. We have developed an algorithm
and a computer program for locating those roots to any specified degree of accuracy.

The complex-valued normal mode frequencies for the system are
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We have taken the time dependence of electromagnetic fields as e-ire’. In this case, the complex
dielectric constant &j for zone j may be written as

&j =  &o&r = 80 (cfj + ie~ ) ,j

where
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In Eq. (2), SO is the permittitity of vacuum md ~j is the electrical conductivity in ZOne j“ In
the present version of the theory, we have taken the cavity walls to be perfectly conducting, so they
absorb no power. Therefore, the quality factor Q that appears in Eq. (1) is due to power absorbed
by the sample only. Once a normal mode frequency has been located, coefficients in the linear
combination of basis functions that represent the normal mode fields can be found by simple matrix
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algebra. Having evaluated these coefficients for all of the zones, we have completely determined
formulas for the normal mode fields throughout the cavity, including the interior of the sample.

The time average power absorbed per unit volume in the sample at point 7 in zone j, call it
~j (7), can then be evaluated using

Fj(F) = : cTEj(F) ● E; (T-) . (3)

The asterisk denotes complex conjugation, and ~.(7) is the normal gmde electric field. The power
absorti in each zone j can be evaluated analytic~ly  by integrating pi over the zone. Calculations
based on these formulas for normal mode frequencies, Qs, fields, and power absorption have
been carried out. Illustrative results will be presented in the next section. In these calculations,
only modes with no z - dependence in the fields are treated. For these cases, it turns out that the
normal modes are all TM in character. Parenthetically, we should mention that for modes where
there is z - dependence, the cylindrical sample produces mixed modes that are neither TM nor TE in
character. The usual mode indices Z, m, n, are applicable to the z - independent cases we will
consider, where n = O.

The 1 = O modes are non-degenerate and have no angular dependence in the fields. The 1 # O
modes are doubly degenerate. The formula for the electric field in zone j at point 7 for one of the
modes can be written as

(4)

The other mode contains a factor e-i’o instead
of ei’e. Provided that only one of these modes
is excited, the power absorption distribution in m
the sample is independent of 0.

To excite only the ei’e mode, for example,
one can use two loop antennas with the normal
to the plane of each loop in the 0 - direction.
(see Fig.2). The current in loop 2 is delayed by
a phase factor 7r/2 with respect to loop 1, and
the amplitude of the currents are equal. The
angular separation between the antennas is l,= lfJcos d VO e
given by LOOP 1

()4pi-1 z
go= —–

2 1 ’
(5) Fig. 2. Excitation of the eil* mode using

two loop antennas

where p is an integer, O, 1, 2,. .For the particular case where 1 = 1 andp=O, ~o=@. This
case is shown in Fig. 1. The e“o modes open up additional frequencies and power absorption
distribution that can be used in processing materials while maintaining isotropy about an axis.
These modes are discussed in the next Section along with the 1 = O modes.

DISCUSSION

The absorption model was applied to cylindrical samples aligned along the axis of a cylindrical
microwave cavity. The cavity was chosen to have a radius pc = 4.69 cm and a length L = 6.63
cm. These dimensions correspond to (L/2pc) = 42 and an empty cavity TMO1 o mode resonant
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frequency fr = 2.45 GHz. For illustration purposes, we used rods of alumina with room

temperature real and imaginary dielectric constants d = 9.0 and d’ = 0.0018, respectively. All rod
calculations were perfommd using 100 evedy spaced zones.
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Fig. 3. Cavity resonant frequency Fig. 4. Sample quality factor versus rod
versus rod radius. radius.

Figure 3 shows the dependence of the cavity resonant frequency on rod radius. As the rod
radius, a, increases the resonant frequency decreases from the empty cavity value and approaches a
limiting value at a/pc = 1 corresponding to a fully loaded cavity. The ratio of the TMo10 to TM1 10
cavity resonant frequencies, fOlo/f 110, are equal for the empty and fully loaded cavity. However,
the behavior of the resortant frequency in the partially loaded cavity depends on the internal electric
field distribution within the rod which is mode dependent. The quality factor Qs of the rod sample
is the measure loaded cavity aualitv factor since we have assumed infiiitelv conductimz walls. The
dependence of Qs on the;~ rad;us is shown in Fig. 4. The sample q~ality facto~approaches
infinity as the rod radius approaches zero. The TM 110 mode is significantly less absorbing than
the TMo1o mode for aspect ratio’s a/pc <0.3.  For aspect ratio’s a/pc 20.3 the sample Qs for
both modes are essentially equal QS = 5000.
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The profile of the power absorption within a rod depends on the excitation mode and the rod radius
to cylindrical radius aspect ratio. To illustrate the distribution of microwave power within rods of
various radii, we have calculated the power absorbed per unit length assumed that a total of one
watt is absorbed by each rod. In this way, we can compare the actual radial profiles between rods
of different radii, since the area under the power density versus radius curve is one watt for every
rod. Figure 5 shows the power density profile for the TM() I () mode for rod radii corresponding to
a/pc = 0.1, 0.4, and 0.8. It is seen that the power density profile becomes steeper as the rod
radius is reduced. The power density reaches a maximum inside the rod for larger radii, however
the magnitude of the power density is reduced, The introduction of angular dependence into the
mode changes the nature of the absorption near the center of the rod as seen in Fig. 6 for the
TM I 10 mode. Here, there is a upward curvature of the power density near the center. This is in
contrast with the downward curvature seen in Fig. 5 for the TMOIO mode. The magnitude of the
Dower densitv in the TMI 10 mode is almost doubled for the same size rod excem near the center.
h maximum ;n the powe;~;nsity is again obtained for the rods of larger radii. ‘
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Fig. 7. TM020° mode power profile for Fig. 8. TM220 mode power profile for
rods of various radii. rods of various radii.

The power density profile for the higher order TM020 and TM220 modes are shown in Figs. 7
and 8. An additional half wavelength radial oscillation is included within the cylindrical cavity by
going from the TN@I()  mode to the TM020 mode. This additional oscillation in the cavity electric
field also leads to oscillations in the power density profile within the rod. The amount of
oscillatory behavior in a rod depends on the rod radius to cylindrical radius aspect ratio. Increasing
the order of the Bessel function by going from the TM020 mode to the TM220 mode reduces the
radial dependence of the electric field near the axis of the cavity. This effect causes the resultant
power density profile within a rod to be streched out along the radial direction.

The cylindrical model developed here is capable of calculating the change in both the resonant
frequency and quality factor of the cavity upon insertion of a cylindrical rod along the axis. We
have compared the model calculations for the frequency shift and sample quality factor to the
predictions of cavity perturbation theory [6]. For these calculations, we excited the microwave
cavity in the TMOl 0 mode and used the complex dielectric constants e’ = 10.0 and 8“ = 0.01 for
the rod material. The calculated frequency shifts from the cylindrical model and cavity
perturbation, shown in Fig. 9, overlap to better than 3 % for rod radii a SO. 15 cm (a/pc S 0.03).
In the range 0.15 cm < a ~ 0.5 cm (0.03 < a/pc <O. 11) the frequency shifts agree to within= 6.8
%. Above a = 0.5 cm, the calculated values diverge with cavity perturbation, predicting a larger
decrease in the frequency shift. The log of the quality factor Qs calculated from the cylindrical
model and cavity perturbation is shown in Fig. 10. For rod radii as 0.15 cm, the Q values agree
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to within = 8 %, while in the range O. 1S cm < a ~ 0.5 cm the maximum disagreement in the Q’s is
19 %. As with the “frequency shift, the Q values diverge for a >0,5 cm with cavity perturbation
predicting a lower Q. - -
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The above analysis indicates that, for a mateial with these typical dielectric constants, cavity
perturbation will only be valid (to within 3 %) for rod radii a <0.15 cm, i.e., for ka <0.08. At a
= 0.15, the sample quality factor Qs = 33,000. This is a rather high Q value and would be hard to
accurately measure experimentally. On the other hand, it would be much easier to apply the
cylindrical model to measurements on a larger rod to extract the dielectric constants. For example,
at a rod radius of a = 0.7 cm, the cylindrical model predicts a quality factor and frequency shift of
Qs = 1560, and Af/f = -0.294, respectively, which are easy to measure experimentally. To
illustrated the sensitivity of the cylindrical model in determining the dielectric constants, we
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assumed the calculated Qs and Af/f for a = 0.7 cm are actually experimental values and used the
model to calculate the required dielectric constants. Figure 11 shows the c“ predictions of the
theory for a range of Qs about the values e’ = 10 and Af/f = 0.294, The sensitivity of the model is
given by the slope at the intersection of the dashed lines, AE’’/AQs  = -6.1510-6. A 10%
uncertainty in AQs will yield a 10 % uncertainty in &“. Figure 12 shows thee’ predictions of the
theory for a range of Af/f about the values e“ = 0.01 and Qs = 1560. Again the sensitivity of the
model is given by the slope at the intersection of the dashed lines, A&’/A(Af/f) = -44.1. A 0.2 vo
uncertainty in A(Af/f) will yield a 0.26 % uncertainty in &’.

CONCLUSIONS

We have developtd a microwave absorption model for a cylindrical rod situated along the entire
axis of a cylindric~ cavity. The model can be applied to modes with angular dependence for
special excitation conditions. The power absorption profiles within various rods were calculated
for the lower order TMzmo modes and the distribution of the power absorption was found to be
dependent on the electromagnetic properties of the excitation mode, This mode dependence could
have important consequences in efforts to control the thermal runaway process. We demonstrated
that the cylindrical model is sufficiently sensitive to determine the complex dielectric constant from
experimental quality factor and frequency measurements for large rod radii where the cavity
perturbation technique is invalid.
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